ﬁ\-'_‘\

-

Technical Report TR=-67-48 May 1967

TRANSLATOR AND SIMULATOR
for the
COMPUTER DESIGN AND SIMULATION
PROGRAM (CDSP)
VERSION I.

by

Charles K. Mesztenyi
Senior Research Programmer
Computer Science Center

The work was performed at the Computer Science Center of the University

of Maryland and was supported by Grant NsG-398 of the National
Aeronautics and Space Administration.

- - e o o S a e

- S e

Abstract

The design of a digital computer, or digital device, can be described
by the Computer Design Language. This Language was proposed by Dr. Y. Chu:
An ALGOL-like Computer Design Language, Comm. of ACM, Vol. 8, No. 10
(Oct. 1965), p. 607-615. This report describes a restricted form of the
Language in more details for the use of the Computer Design and Simulation
Program (CDSP) on IBM 7094. The CDSP consists of an Executive Main program
under which various subprograms may be called. This report contains the
detailed flow charts of the Tramslator and Simulator subprograms. The
Translator establishes various symbol tables and a Polish string from the
description of the designed computer. The Simulator executes test programs
written for the designed computer and prints out the contents of prescribed

registers.

-

a e &S am

1.

-2 -

Contents:

Computer Design Language

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Card Format

Constants, Variables

Declaration Statements

Operators

Expressions, Microstatements, IF Statement
Terminal Declaration

Comment Statement

Switch Statement and Labeled Statement

END Statement

Executive Program

Translator
3.1 Description
3.2 Flow Charts

Simulator

4.1 Description

4.2

Flow Charts

Available Binary Operators

11
12
13
14
14
15
16
17
17
29
50
50
54

65

1. Computer Design Language

A Computer Design Language was proposed by Dr. Yaohan Chu: "An ALGOL-like

Computer Design Language' Comm. of ACM, Vol. 8, No. 10 (Oct. 1965) p. 607-
615. The Computer Design and Simulation Program (CDSP) implements a subset
of this language on the IBM 7094 for simulation purposes. Using this lan-~ |
guage, the Design of a Digital Computer is described by the declaration of
its digital devices and by the description of the interaction between the
declared devices.

The following devices are permissible in CDSP, Version I.:

A Register 1is handled as a storage device identified by a name and by
the number of bits it contains.

A Subregister refers to a portion of a register.

A Memory is a multiple storage device with its elements, called words,
all having the same number of bits. The words are consecutively addressed,
and only one of the words can be referenced at a time. The address of the
referenced memory word is defined by the contents of a declared register.

A Decoder is an output signal (TRUE or FALSE). The subscript of the
decoder is compared to the contents of a specified register or subregister

defined in the decoder declaration and the output signal is given according

to the equivalence of the two values. The TRUE or FALSE signal is represented

with a binary bit one or zero, sometimes referred as YES or NO.

A Switch is handled as a special storage device, where the '"contents"
of the switch is one of its possible positions. Changing the position of a
switch may initiate an action between other devices.

A Terminal represents output signals referring to the outcome of a

logical expression simulating logical network with no storage element.

- s N

an am B =E am

1

A A S N G5 N I aE Em @ .

-4 -

Clock represents a timing device giving an output signal at equal
timesteps., During one timestep, different actions may occur between devices.
During the simulation, the clock is also used for counting.

The interaction of the déclared'devices is described by Labeled
Statements. These statements contain two parts: The Label part is a
logical expression &ielding one output signal (TRUE or FALSE). The other
part, containing the microstatements, describes the action to be taken
when the Label has a TRUE output signal.

Example: |

REGISTER, A(2), R, F(5), G(5)
DECODER, K = A

CLOCK, P
JK(3)*P/ F=G,R=1, A=0
/K(0)*p/ F=G*25 R=G(l), A =7

In tue first line, 4 registers, A, R, F and G are declared, they con-
sist of 3, 1, 6 and 6 bits respectively.

The second line defines the decoder K connected to the register A.

Clock P is defined by the third line.

The last two lines are independent labeled statements. If the value
of the label, K(3)*P, is TRUE, then the contents of G replaces the contents
of 7, R and A will have the contents 1 and O respectively. K(3)*P will be
TRUE only if the countents of A is 3 and an output signal is given by the

clock P. The second labeled statement is executed when K(O)*P is TRUE,

- 5 -
(i.e. the contents of A is zero) and an output signal is given
by the clock P. 1In this case, the contents of F is replaced
oy the result of a logical AND with the contents of G and the
octal constant 25, the contents of R is replaced by the second
bit of G, and the contents of A will be 7.

The precise rules for forming the Declaration and Labeled

Statements are described in the subsequent sections.

1.1 Card Format
Using the Computer Design Language, the machine design should be
punched fix CDSP with the following format:

Col. 1 normally will be blank.
If it contains "C", then it is regarded as a comment
card, and it is not processed. If it contains "1", then
it is regarded as a continuation of the last non-comment
card.

Col. 2-72 contain the description statement. Blank characters
are simply ignored by the Translator and may be used freely
to improve the readability of the statements.

Col. 73-80 are not processed by the Translator, they may be used

for sequence numbering or other identification.

1.2 Constants, Variables,
1.21 Constants

All numbers are regarded as positive octal integers, thus digits 8 and
9 may not be used for constants. Furthermore, no constants may exceed 12
octal digits. Examéles: 17, 0, 123500

1.22 Variables

The Registers, Subregisters, Memories, Decoders, Switches, Clocks and
Terminals are treated as variables. All variables must be declared in a
Declaration Statement prior to their usage elsewhere.

The name of a variable must be unique and must consist of 1 to 6
alphabetic or numeric characters of which the first must be alphabetic.
Examples: A, BI9, R25ABC
Restriction: IF, THEN, END may not be used as variable names.

The usage of the variables after declaration may take different forms;

they are described under the corresponding Declaration Statements.

-7 -

1.3 Declaration Statements

All variables must be declared in onme of the Declaration Statements
prior to any use of that variable. Column 1 must be blank and col. 2-72
must contain the declaration type, comma and list. Blanks will be disregarded
by the Translator.

1.31 Register Declaration

Form: REGISTER, list
Examples: REGISTER, A(5), B2(10),C
This statement declares all variables appearing in the list as registers.
The list consists of single register definitions separated by commas. A
single register definition consists of the name of the register followed
by octal number enclosed in parentheses. This octal number, d, defines
the register as one having d+l1 bits which are numbered from zero to d con-
secutively. When a register consists of only one bit, the corresponding
zero in parentheses may be deleted, see the above example with register C.
After its declaration, a register may be referred in the following forms:
1. B2
2. B2(3)
3. B2(0-2) or B2(4-7)
4. B2(¢9P)
B2 refers to the contents of the full declared register.
B2(3) refers only to the 4th bit of the register.
B2(0-2) refers to the first 3 bits of the register
B2(#P) refers to the part of the register defined by @P as a subregister,

see below:

1.32 Subregister Declaration

Form: SUBREGISTER, list
Example: SUBREGISTER, B2(@P) = B2(1-4), A(PP) = A(0-3), A(I) = A(4)

The subregister is always used with a register name, and it refers to
a part of that register. Logically the list consists of a set of equiva-
lences separated by.commas. When B2(@P) appears in the text following the
above declaration example, B2(1-4) is understood.

1.33 Memory Declaration

Form: MEMORY, list
Example: MEMORY, M(C) = M(77,10), ND(J) = ND(6,3)

This declaration statement permits the ﬁser to establish various blocks
of memory, each addressable by a specified address register. Each individual
memory definition in the list is of the form

M(QR) = M(dl, d2)
where

M is the name of the memory.

R is the name of the corresponding address register. R must have been

previously declared.

d1 is the dimension of the memory in octal. (i.e. the memory M consists

of dl + 1 words consecutively numbered from O to dl)

d2 is the length of each word of the memory in octal. (i.e. each word

of M consists of d2 + 1 bits)

In later reference, a specific memory word may be identified by a con-
stant address, e.g. M(12), or by its address register, M(R), in which case
the contents of R defines the word address. In any case, one is always

referring to the contents of the full word of memory.

1.34 Decoder Declaration

Form: DECODER, list
Example: DECODER, K= F, L = G(2-5)

The list consists of the individual decoder definitions separated by
commas. An individual decoder definition comsists of the name of the
decoder, the = charaéter and the name of a previously declared register which

may be subscripted. FEach decoder declaration provides a reference to the

" contents of the associated register or register—segment. In its use, the

decoder name is always followed by a constant enclosed in parentheées,
e.g. K(5), whose value is a single bit (1 or 0, TRUE or FALSE depending on
whether or not the contents of the register or register part is equal to
the given éonstant.

1.35 Clock Declaration

Form: CLOCK, P(d)
Example: CLOCK, P(2)
where P is the name of the clock and d is an octal number.

This declaration defines (d+l) (3 in the example) clocks. These clocks
are referenced in the statements as P(0) (or simply P), P(1),..., P(d). The
impulse diagrams for the clocks are assumed to be the following:

v] f I i
I) : i

!
1 1

P(1)

P(2)

2(d) < ﬂ ﬁ] H_L_.

B [TE S,

T
|
|
|

- 10 -

i.e. the time interval between the impulses given by the clocks are
the same and the impulse given by clock P(i) immediately follows the impulse
of P(i-1), i=1,2,...,d.

The clocks are used for counting during the simulation, thus the con-

tents of the clock is the accumulated number of impulses given from the

start.

1.36 Switch Declaration

Form: -SWITCH, list
Example: SWITCH, START(OFF,ON), SENSE (P1, P2, P3)

The list consists of single switch definitions separated by commas.

)

A si

(e

1gle switch definition comsists of the name of the switch followed by its
positions enclosed in parentheses and separated by commas. The first posi-
tioﬁ listed is assumed to be the starting position of the switch, i.e. the
position of the switch at the start of the simulation. In the above example,
the START switch is in OFF position, thg SENSE switch is in Pl position.

In later references, a switch is either checked for one of its position,
or set to one of its position. When a switch is checked %or a position, it
has the form

NAME (POS) e.g. SENSE (?2)
and it gives a TRUE or FALSE (bit 1 or 0) depending on the position of the
switch at the time of the reference.
When a switch is set to a position, it must appear as follows:
NAME = POS e.g. SENSE = P3

1.37 Terminal Declaration

Terminal declarations is described in 1.6.

- 11 -

1.4 OQperators

With the exception of the complement operator, the available operators
are binary operators, i.e. from two binary quantities they produce one
binary quantity. In the Computer Design Language, a binary quantity is defined
by its wvalue and by the number of bits in which it ié represented. The
available binary operators require that the two binary quantities on which
they operate, should have the same number of bits. E.g. the binary operator
logical AND, operating on the contents of two registers, is used corfectly
if and only if the two registers have the same length in bits.

The octal constants used in the language are exceptions of the above
rule by having undefined length. As soon as a constant is connected to a
variable by a binary operator, its length is defined to be equal to the
length of variable by taking the necessary number of bits from the binary
representation of the constant fromvright to left, placing zero bits in the
front of it if it is necessary. This definition requires that a binary
operator may not be used to operate on two constants, i.e. at least ome
of the quantity must be a variable. Furthermofe, the unary operator, taking
the complement of the number, may not be used with a constant.

The following operators are available in CDSP, Version 1:

' (Apostrophe)

Example: A'
The apostrophe operator takes the binary complement of the number it
refers to, the contents of A.

= (Equal sign)

Examples: A =B or A = 25
This is a replace operator i.e. the contents of A is replaced by the

contents of B or by the constant 25.

+ (Plus sign)

Examples: A+ B or A+ 15

The plus sign denotes a logical OR between two binary quantities.

* (Asterisk)

Examples: A%*B or A%*27

The asterisk denotes a logical AND between two binary quantities.

Functions

Form: .NAME.

where NAME can consist of 1 to 6 alphabetic_or numeric characters of which

the first must be alphabetic, not including the preceding and following

periods.

Examples: A.ADD.B or A.SHR.1

These examples are binary operators; they are supplied by the standard

function package, see Section 5.

1.5 Expressions, Microstatements, IF Statement

1.51 Expressions

An expression is a proper sequence of constants, variables, operators
(except =) and parentheses, with the usual mathematical meaning.
Examples: (A+B)*C+1 - orD or 10

An expression provides a single binary quantity (composed of one or more
binary bits depending on the operators and variables involved) that result
from the implied evaluation.

When the hierarchy of operations in an expression is not explicitly

specified by the use of parentheses, it is understood by the Tramslator to

be in the following precedence (from the innermost operations to the outermost):

- i3 -
! Complementing
.xxx. Functions

* Logical AND

+ Logical OR

1.52 Microstatement

A microstatement consists of a variable, the reﬁlace operator "="
and an expression.
Examples: A =1 _or A=B *C+D

1.53 1IF Statement

The IF Statement has the following form:

IF (expression) THEN (microstatements and/or IF statements)

The expression enclosed in parentheses must give a‘single bit answer one
or zero (TRUE or FALSE). If the answer is TRUE, all microstatements separated
by commas and enclosed in parentheses after THEN will be evaluated. If the
answer is FALSE, then all statements within the parentheses are skipped.
Example: IF ((G(1)*B(1)).EQU.1l) THEN (G(1) = 0, A = B)

The IF Statement is sometimes referred as conditional microstatement.

1.6 Terminal Declaration

Form: TERMINAL, list
Example: TERMINAL, T =A * B+ C, R = G(2-7) + 1
The list consists of the individual terminal definitions separated by
commas. The individual terminal is defined by a microstatement, i.e. by the
name of the terminal followed by the replace operator and by an expression.
All variables appearing in the expression must have been declared previously.
When a terminal is referenced, its value is the binafy quantity obtained

by the evaluation of its declared expression.

- 14 -

1.7 Comment Statement

When column 1 contains a '"C", the card is understood and it will not

be processed.

1.8 Switch Statement and Labeled Statement

Switch Statements and Labeled Statements are logically different, but
their form is the same. Either consists of a label which is an expression
enclosed in slashes, and one or more microstatements following the label.
The microstatements are separated by commas. The end of the statemeﬁt is
indicated either by a new label or by the END statement, thus it may be

written in more than one line (card) without using col. 1 =1 for indicating

continuation.

/Expression/ microstatements and/or IF statements

In both types, the expression of the label must give a single bit value,

TRUE or FALSE.

1.81 Switch Statement

The label of the Switch Statement is a switch name followed by one of

its positions enclosed in parentheses:
| /Name (Position)/

During the simulation,.the switch statement has the following meéning:

If the named switch is set to the position indicated within the parentheses,
the label expression is TRUE and the following microstatements will be executed.

The position of a switch may be set by either a microstatement (NAME = POS),
which corresponds to an internal switch operation, or by a manual operation

which is simulated by reading a control card.

- 15 -

1.82 Labeled Statement

During the simulation, all labels are evaluated. TIf there.
are more than one label with a TRUE value, the simulation stops
indicating an error. If there is only one label with TRUE value,
then the microstatements following that labei will be executed
and the process repeats itself. If there are no labels with
TRUE value, the simulation gives the control back to the éxecutive
routine.

1.9 END statement

The physical end of the program describing the designed
computer is indicated by the END statement. The word END can

be anywhere in col;:2—72, with the rest of the columns left blank.

- 16 -

2. EXECUTIVE PROGRAM

The Computer Design Program contains various subprograms,
such as the Translator, Simulator, Boolean aﬂd Circuit Subpro-
grams. The subprograms are monitored by the Executive Program.
It accepts control cards with $ character ih column 1 and it
gives the control to the proper subprogram.

Beside monitoring, the Executive Program also handles the
communication between different subprograms. The results of
the executed subprograms are saved on an auxiliary tape. The
contents of this tape is referenced through a list‘in the Execu-
tive Program which is called the Communication Table. When
another subprogram needs the results of a previously executed
subprogram, the Executive Program supplies them by reading the
auxiliary tape.

The Executive Program has the following control cards:

SSTART causes an overall start with empty Communica-
tion Table.

$START m causes a restart. It must be followed by m
cards containing the Communication Table.

- 17 -
3. TRANSLATOR

3.1 Description

The Translator establishes various symbol taBles and a Polish string
from the input cards containing the description of the designed computer
using the Computer Design Language.

The established tables are as follows:

NAME | COUNTER DESCRIPTION
R NR Register Table
SR NSR Subregister Table
0
M NM Memory Table %
D ND Decoder Table ;
SW NSW Switch Table E%
T NT Terminal Table
C NC Clock Table
SWL NSWL Switch Lable Table
LST NLST Labeled Statement Table
P NP Polish String
STORE | NSTORE Storage Array.
The counter corresponds to the last bit used in the
array,

G G G &N OGN Gb | @Y G G G GE G G0 an ar S B &

- 18 -

The Symbol Tables are generated by the corresponding Declaration
Statement. For each storage element of the designed computer, such as the
registers, memories and switch positions, a unique position is assigned in
the Storage Array.

The logical expressions and microstatements, such as the Terminal
Expressions, the microstatements of the Switch Label Statement, the Labeled
Statements, are translated into reverse Polish notation and stored in’the
Polish String. This Polish String will be used by the simulator to evaluate
the expressions and microstatements. The Terminal Table contains the
pointers to their expression in the Polish String. The Switch Label Table
contains the labels (switch names and positions) with the pointers to their
micrqstatements in the Polish String. The Labeled Statement Table contains

the pointers to the label expressions in the Polish String.

Register Table, R(i,4), i=1,2,3; j=1,..., NR

R(1,3) R(2,3) R(3,3)

BCD name of | Number of bits Location of the
the register | of the register last bit of the
register in the
Storage Array

Subregister Table, SR(i,j), i=1,2,3,4; j=1,..., NSR

SR(1,3) SR(2,3) SR(3,3) SR(4,3)
BCD name of Number of bits Location of the BCD name of
the register of the subregister last bit of the the corre-

Subregister in~ sponding
the Storage Array | register

- 19-
Memory Table, M(i,i), i=1,2,3,4,5; j=1,..., NM
M(1,3) M(2,3) M(3,3) M(4,3) M(5,3)
BCD name| Number of bits | Location of the Index k of Number of
of the per word of last bit of the the corre- words in
memoxry the memory - first word of sponding the memory
the memory in the ‘address reg-
Storage Array ister R(1,k)

Decoder Table, D(i,j), i=1,2,3:; j=1,..., ND
D(1,3) D(2,j) D(3,3)
BCD name Number of bits Location of the

the decoder

in the correspond-
ing register

last bit of the
corresponding
register in the
Storage Array

Switch Table,. SW(i,j), i=1,2,3;

i=1,..., NSW

SW(1,3) Sw(2,3) SW(3,3)
BCD name of | Number of Location of the last
the switch | positions | bit of the current

Array

position in the Storage

Format of the Storage Array with Switches:

s

m——

36 bits
Current position

36 bits
lst position

36 bits
2nd position .o

36 bits
SW(Z’j)th
position

(BCD)

o W

-
Ml S

SW(3,3)

- 20 -
Terminal Table, T(i,3), i=1,2; 4=1, ..., NT
T(1,3) T(2,3)
BCD name Entry point to

of the terminal

String

the expression
in the Polish

Clock Table, C(i), i=l,..., NC+2

C(1) C(2) c(3) . C(4) C(NC+1) C(NC+2)
BCD name NC=number | Count for {Count for .. Count for Count Egr
of the clock | of clocks | O-clock 1st clock (NC-2)=+ (NC-1)—
r clock clock

Switch Label Table, SWL(i,j), i=1,2,3,j=1,..., NSWL

This table contains the necessary information about the Labels of the

Switch Statements.

by a manual or internal switch setting.

SWL(1,3) SWL(2,3) SWL(3,3)
BCD name of BCD name of Entry index to
the Switch the position of the microstate—~

the Switch

ments in the
Polish String

It can be rapidly scanned if a switch interrupt occurs

-_

- 21 -

Switch Label Table, SWL(i,4), i=1,2.3,4=1,.... NSWL

This table contains the necessary information about the Labels of the

Switch Statements. It can be rapidly scanned if a switch interrupt occurs

by a manual or internal switch setting.

SWL(1,3) SWL(2,3) SWL(3,3)
BCD name of | BCD name of Entry index to the
the Switch the position of | microstatements in
the Switch - the Polish String

Labeled Statement Table, LST(j), J=1,..., NLST

All Labeled Statements are consecutively numbered from one to NLST.

This table contains the corresponding entry indices to their Label expression

in the Polish String.

LST(J)

k = index P(1,k)
as entry point to the
Label of jth Statement

Polish String, P(1,1), P(2,§); j=1,..., NP

As it was noted before, the microstatements and label expressions are
stored in reverse Polish notation in the Polish String. The rules of the
transiation of the expressions is described by C. L. namblin: Translation

to and from Polish notation. Comput. J. 5, 3(0ct. 1962), 210-213 in the

“I. Orthodox A to Reverse Polish' Section. A position in the Polish String

consisting of two words (P(1,j) and P(2,j)) may refer to a storage elemgnt,

s W B =) aA B ay SN a e

- 22 ~

to a constant, to an operator or to a speéial instruction, The first word,

P(1,j) defines the above types.

Storage elements: P(1,j) is a positive non-zero integer and it refers to

the number of bits of the storage element.

Register, Subregister, Switch name, Switch position

P(1,3) P(2,3)

Number of bits | Location of its
of the storage last bit in the
element Storage Array

The switch name corresponds to the current position location.

Memory Word -

When a memory word with constant address is referenced in the text, its
' translated form will be the same in the Polish String, as a register. When
a memory word with its address register is referenced, it is translated into

two positions of the Polish String using the following form:

P(1,3) P(2,3) ~ P(1,3j+1) P(2,3+1)
Number of bits | Location of the Number of bits Location of
in the memory last bit of the . (in the address the last bit of
word address register in }register the first word of
the Storage Array: , the memory in the
with negative sign } Storage Array

Note that the distinction is made between the two forms by the sign of

P(2,1).

_23..
Constants
Constants are represented directly in the Polish String. This
restricts the constant with maximum 36 bits, but the actual size in number
of bits is not defined by the Translator. Since a constant is always con-
nected with a storage element through a binary operator, the size of the
constant is defined.by that storage element and the binary operator. For

this reason constants are represented with P(1,j)=0.

P(1,3) P(2,3)

0 The constant as
a full word with
preceding zeros.

Operators
All unary and binary operators are represented with P(l,j) = -101. 1In
later versions, we might separate the different operators with P(1,j) = =101,

-102, -103,... if that gives any special advantage for other subprograms.

P(1,5) | P(2,3)

-101 : BCD name of the
J ‘operator

Example:
A Decoder is tramslated as an expression. Thus if D is the decoder of
register F which has n(F) bits and location L(F) in the Storage Array, the

notation

D(15)

- 24 -

has the equivalent form in the Polish String

k P(1,k) P(2,k)

j n(F) L (F)
i+l 0 15
j+2 -101 EQU

The replace operator (= character) is regarded as a special operator.
The form of the Polish String for
A=(Expression)

is the following:

P(1,k) P(2,k)

(Expression translated)

~101

n(A) L (A)

Special Instructions

Special Instructions consist of the following:
1. Clock reference
2. Entry
3. Exit

4. Transfers

GE R = W a o aE

- 25 =
l. Clock reference

When a clock name P appears in an expression, it is translated into

the following form

P(1,3) P(2,3)

where k is the index value the clock was referenced, P(k). If it was not
indexed, then k = 0.

2-3. Entries and Exists

Since during the Simulation, the Polish String is executed in segments,
we define a full segment of the Polish String as follows:

A Full Segment of the Polish String are comsecutive positions such

that

1. The first position is an Entry position

2. The last #osition is an Exit position

3. Between the first and last positions there are no Entry and Exit
positions, and only one of the following four cases is possible:
a) translated form of the expression of one terminal
b) translated form of one switch statement
c) translated form of the expression of the label of one labeled

statement

d) translated form of all the microstatements of one labeled

statement.

- 26 -

The format of the Entry and Exit positions are as follows:

Entry
P(1,3) P(2,3)
-2 j*
Exit
P(1,3%) P(2,3%)
-3 0

where P(2,3) contains the index value J* of the corresponding Exit position.
The Full Segment of the Polish String enclosed by the Entry and Exit posi-
tions can be regarded as a subroutine and P(2,j*) will be used for return
transfer.

4., Transfers

Subroutine Transfer

When a terminal is represented in an expression E, it is necessary to
evaluate the full segment of the expression of the terminal inside of the
full segment of the expression Z. This is accomplished by the Subroutine

Transfer which has the following form

P(1,3) P(2,3)

-5 k

Position k should be in the same full segment with j.

- 27 -
Example
Consider the following statements.
REGISTER, A(5), B(5), C, D(5), E(5), G(3), F(3)
DECODER, K(17) = F
CLOCK, P(2)
TERMINAL, SUB = K(10)*C*P (1)

/SUB*E(1)/ IF (G(2).EQU.1) THEN (A = B), D= A+E

If L(x) indicates the location of register x in the Storage Array, then
the Polish Array has the following segments (j indices were arbitrarily

chosen for this illustration):

- Gl N Gy G oy By G5 A NS an a e a2 aa

|
|
|

>

i [P, |P(2,3)
70 2 78
71 4 L(F)
72 0 10
73 -101 EQU
74 1 | L(C)
75 -101 *
76 -1 1
77 -101 *
78 -3 0
120 -2 124
121 -4 70
122 1 L(E(1))
123] -101 *
124 -3 0
125 -2 138
126 1 | L(G(2))
127 0 1
128| -101 EQU
129 -5 133
130 6 L(B)
131 -101 =
132 6 L(A)
133 6 L(A)
134 6 L(E)

N e i

- 28 -

Terminal
Segment

Label
Segment

Microstatements
Segment

5 1 P(1,3) | P(2,3)
135 -101 +
136 -101 =
137 6 L(D)
138 -3 0
139 ces cen

~ 29 -—

3.2 TRANSLATOR -~ FLOW CHART

0—3 |END
ENTRY ° >

0—> Count'y

Y
W
Read card into <
A(j) and print

v

YES
Gs Col.l WM ¢ }% —

Y

Separate symbols

Translate B as a

in A into array B Declaration

Statement

@ 8(1) a BCD name \JES +
Q B(2) a comma J >
NO \yno

Cls IEND 1 2)—L-Cs B(1) n/m 2) <
vesY V Yes

\
° Read card into
SAVE ﬂk

A(j) and print
Results w

YES
Is Col.1 mg" 2

Separate symbols Move array Move array
in A into array BB 88 to the BB into
end of B array B

array
is BB(1) WENDY ?
Y Vv
NO
15 1END GBBU) n/n } > /[\
¢YES
Y
Translate B as a\
Labeled Statement or >

Switch Labeled
Statement

el

- 30 -

(1) Separate Symbols from array A into array B

SUBROUTINE SEPT (A, N, B, IND, M)
Given 6xN BCD characters packed in the array A(k), K=1, ..., N, the
routine unpacks the characters and stores them in the array B(j), j = 1,
«esy M. The array IND (j), j =1, ..., M will contain identifying integers

as follows:

IND (3) B (j)

1 Variable name

2 Number (constant)

3 ((left parenthesis)
4) (right parenthesis)
5 . (period)

6 = (equals)

7 / (slash)

8 * (asterisk)

9 + (plus)
10 - (minus)

11 ‘ $ (dollar sign)

12 , (comma)

13 ! (apostrophe)

The unpacking is done as follows:
1. Blanks are disregardéd.
2. Each character which is not a letter or digit is regarded as a
separator and it occupies one word in the array B, left adjusted

with 5 blanks followed.

3.

5'

- 31~
A string of letters or digits are regarded as a Variable Name if
the first character is a letter. If it consists of less than 6
characters, they will be left adjusted in B(j) with blanks followed.
If it consists of more than 6 characters, only the first 6 characters
will be retained im B(j).
A string of digits (from O to 7) is regarded as an Octal Number.
If the string has less than 12 digits, the octal number is placed
in B(j) right adjusted. If it has more than 12 digits, oniy the
first 12 digits will be retained.

Digits 8 and 9 are not allowed.

- 68 ew--ae

- 32 -

FLOW - CHART

v
0-=>]
0= 1L
0> IN
\]
1—>i
- \ -
s A(i) blank 2 / T
NO
Letter \l/
\y ol j+1 =] Special -
> | blank-» B() Digit Cha":“;a
1= lND(jg - racter
Y NO 0 >IN \\l |{l
0
' Is IL uwor ¢
L4+ 1 =1L << U) 0 —> iL
i \ YES 0 —> IN
I's lLlargeg-%— (1s iNmwon 2 } 0~>8(j) \
 ‘than'6 . 2 —> IND(j) —
- NO 4, NO \ ACi)+ bl(l.ar)\ks
-2 B(]
- <
Pack A ig IN# 1 = IN e 4
into B(] \
posit. IL Set IND(J)
i Is IN larger 4
than 12
\l/ NO
\ Pack X i;
into B(] V
reverse IN
position V
- <
P = \ - o
> i+l > i l
W NO

- 33 -

(2) Translate B as a Declaration Statement

B(l) defines the type of declaration. M is the number of
symbols separated in the array B. The following flow-charts are
given by types:

REGISTER, list

B(l) = REGIST
The list consists of one or more registers in the form of

NAME (dl) or NAME

) S oy
W =,

NR-+1-> NR <<

B(i)—>
R(1,NR)

] YES NO
_Bh+ﬂ+1 = 1s 8(i+1) H@AEF>-1—>RQAM

—> R(2,NR)

,___JL___

i _ NSTORE +

I i+ 4 —>i = R(2,NR) —> i1 —>i
' NSTORE _

NSTORE —>
R(3,NR)

v

NO }
EXIT < f,ls i smal&er t?an) " ;

\!V YES
YES
is B(i) a comma ?
S =
YNO

The list consists of one or more subregisters in the form of

R(S) =R

(d) or R(S) = R(

dl—

d

5)

where R is the name of a register, S is the name of the sub-

register.

B(i+7)—>IL

1—> SR(2,NSR

y
nint

SR(1,NSR)

Find index] such
that B(i) is

R(1,)

) NO
—Z{ls B(i+8) 14 a

\

/ i+ —>1i

R(3,J)-R(2,]) +

YES
—=

B(i+9)+1-
Bli+7)—>
SR(2,NSR)

| 41—

——

IL+ 1 —> SR(3,NSR)

NO

B(i+9)—>IL
i+11—> i

N\
6 i smaller than Mj

YES

]

YES
{_‘6 B(i) a comma ?)

T

/\IQ\JO

EXIT

MORY, list

J.JEJ.'J.

B(l) = MEMORY
The list consists of one or more memories in the form of

NAME (R) = NAME (dl, a.,)

2

ENTRY

3 —> i S
v

| NM + 1 —> NM

v

B(i) —>
M{1,NM)

Find index k such
that B(i+2) is
R(1:k)

{

k —> M{4,NM)

|

Bli+7) + 1
—> M(S‘,NM)

B(i+9)+1
—> M(2,NM)

¥

NSTORE + M(2,N
— M(3,NM

{

M{2,NM) x M(5,NM) +
NSTORE —> NSTORE

¥

\ i+l —>1i

NO.
‘ Is i less than M

\ YES

YES . NQ
fel—>i —<{Ils 8(i) a comma ?)

~—

DECODER, list

B(l) = DECODE
The list consists of one or more decoders in the form of
NAME = R

NAME R(S)

NAME R(d d,)

1 "2
where R is a register, S is a subregister, dl and d2 are octal

numpbers

3 — 5 i < ENTRY

ND+ 11— ND

B(i) —>
p(1,ND)

Find index k such
that B(i+2) is
r{1,k)

!
Y
————<—N°— 1s B(i+3) a "(" 2

\l/ YES

' s 8(i+4) an > YEES B(i+6) - B(i+4)

R(2,k) p(2,n0) (octal number ? +1 —> D(2,ND)

R(3,k) —> D(B’ND) f/ NO
i+ 3 —3i \(

Find index k such
that B(i+2) is R(35k)-R(2,k) + 1+

SR(4,k?s§gg(i13(.‘i<T 4) B{i+6) —>D(3,ND)

\ V
SR(2,k)—>D{ 2,ND)
SR(3,k)—>0(3,ND)
i+6 —i

i+8—>i

v
NO
Cls i less than D e EXIT

YES

YES NO
i+1 > i \ls B(i) a comma ?.)

. on oo N G0 G M9 B S0 0N G B B 5 G0 o0 S8 B e

SWITCH, list

B(l) = SWITCH

- 37

The list consists of one or more switches in the form of

NAME (Pl, P

2: o0y

Pn)

3 > i

'\‘u’

:

NSW+4 1 —» NSW

]
B(i) —>
SW(1,NSW
Voo
NSTORE + 36
—3 NSTORE

v

NSTORE —3
Sw(3,NSW)

/
0 —>
SW(2,NS W)

\

B(i +2)—>

STORE(36,
STORE)

ENTRY

B(i) —>

YES
<ls Bli+1) a comma?> =

i+ 2—>i

{ls i less than M

STORE(361,

Sw(2,NSW)+41

— sw(2,NsW

NSTORE + 36

it2 —>i

e e

\NO
J

i+1—>1i

YES

YES R NO
= Is 8(i) a comma ?

——3 NSTORE

EXIT

CLOCK, list

B(1l) = CLOCK

The list has the form of NAME

ENTRY

or

NAME (4)

8(3)—> ¢(1)

<;:un a w(w ?:>1§E>4——‘

\‘/NO

!

1 —> ¢(2)

\zv

1+ 8(5)
—> ¢(2)

0—> (2 j)
I 1heees0(2)

Y

B(l) = TERMIN

The list consists of the individual terminal declarations in

the form of NAME = EXxpression

B(i) —> T(1,NT)
NP+ 1—3 NP

3

NP—> T(2,NT)
-2—> P(1,NP)

Find index j such
that B(j) is a commg

or set jz M4

if there is none

Translate expressiQn
in B(k) into P

i+2£Kk<]-1

=TT

NP —3 P(2,T(2,NT))
-3 —> P(1,NP)

- NO
‘ Is i less than M?\, —

\YES

YES NQ
i+ 1—> i l Is B(i) a comma ?

EXIT

(3) Translate B as a Labeled Statement or a Switch Statement

The only difference between a Labeled Statement and the

Switch Statement is in the translation of the Label. The trans-

lation of the microstatements are the same.

Translate

ENTRY
Label

Translate
EXIT

Microstatements-

(3a) mTranslate Label
B(1) =/
Fu:d Jj1 such that . ENTRY
8(j1) is a / and
21
NP+ 1 —>NP
NP —3 NSV
-2 — P{1,NP)
11 = loc. of the curreni
NO ‘ j1=6 YES position of the sw.
iNLST 1 NLST| s { B(2) a switch name 12= loc. of the B(4)
¥ ' B(4) switch posi# position in STORE
NP —3 NLST .
77\ \V NSWL + 1
3¢ ! —> NSWL
“ Translate
expression B(]) \V
into P 8(2) ——> suL.(1,NSWL)
2¢j<j1- 8(4) —> SwWL(2,NswL)
NP ——> SWL(3,NSWL)

[NP+1——>NP ‘ » \

36 > P(1,NP+ 1)
12 ——> P(2,NP +1)
-101 —> P(1,NP + 2)
= —> P(2,NP+2)

NP —— P(2,NSV)
-3 — P(1,NP)

36 —3> P(1,NP+3)
NP+ 1 —> NP 11 —> P(2,NP+3)
-2 —» P(1,NP) NP + 3 —3 NP
NP ——3 NSV .
T
Y = n—j]

| 4
-l G G & G & 0 Gh Gh &b O G D D & o G - e

(»3b) Translate Microstatements

NIF = depth of the IF conditions.

The array IF (L), L = 1, NIF

e o o,

contains the transfer points in the Polish String.

0 —>NIF

- P

(:?; j less than M::)

\ll‘{es

NP— P(2,NSV)
=3~y P(1,NP)

‘NP+1
—> NP

| j2—>j

(1s8(3) * sw:.::: ?

) >0
-101 —> p(1,NP)
= —3 P(2,NP) Find j1 (> jO)
such that
B(j1) is an =
NP4 4 —> NP ‘ \4/

‘ / Find j2 (> j1)
(3 \ .
such that either
Translate expr. B(j2) is a comma
8(k) into P ?r .
Lol B(j2) is an unpair-
ji+1£k=j2-1 ed right paranth,

or j2= M+1

\YES NIF+ 1—> NIF
Is B\j WiFn 2 -
(=29 J j+2—>]
\j No
YES /
\if B(j) a comma ?

) |
. \NO
) NO
DECODE(B(JO)) Gg(j) a variab@%—
> p YES

Find j2 such that
8(j2) is the first
unpaired right

Translate
Switch
Setting

parenthesis

Translate
NO expression B(k) into
is NIF>0? @ p
vES ' jL k& jo-1
. \
IF(NIF)—>1 \‘ ,
NP+ 1) NP+ 1—> NP
p(2,L) .\/
NP IF (NIF)
NIF=1 —>NIF -5 —»P(1,NP)
j2+2—>5j

3d

(3¢c)

Translate expression

- 43

The expression is contained in B(j), j = jo, ceus jl and it

is translated into the Polish array P(]z', k), K=NP + 1, ...

1
m(2,L) is a temporary array.

¥

Variable name

or constant

DECODE(B(j))

—>

IsT(1,L)> ii

NP+ 1 ——> NP

¥

-10] ——>
Ll p(1,e)

G 2,L)—>
p(2,NP

<L - 1—>L

ENTRY = jo—>]
0—=L
C e)
V /
(+ .)
— v I powery l?_,;d lT_.>iiJ s L>02?
—3> L B v . YES vES
|+ —>88 | F-»_ga_l B(j+1)58 E’ﬂ (s T(1,L)= -1 J>
i $2—> |
-1—= \Y \y ' NO
W (1,L) \
i S = . NP+ 1— NP

101 —>
P(1,NP)

T(2,L) —
P(2,NP)

v

ii—> T(1,L)

38 —3>W(2,L)

Y

[1oL —

-101 —> P(1,NP)
W (2,L)—>P(2,NP)

L-1—>L

\

j*1—>j |

v

NO
(ls j larger than j}:} -

VES

NP+ T —> NP

IslL z

ero 7

‘\\ YES

EXIT

J -

f

-

(3d)

- 44 -

DECODE (B(j)) - P

B(j) must be one of the following:

ENTRY

NO H
. tch
__.é__@(.]) a Smnca:me

Constant

Register name

- Memory name

Decoder name
Terminal name
Clock name

Switch name

__ YES
8(j) is constant NP+ 1—3Np >
0

0 ——es P(1,NP)

/

<:E; B(j) a reg.name

Decode

Is B(j) a memory “\ES
. name

Decode’

Memory

Decode

(1s 00y = 2t

:)Yes then B(j)
s B(;) a terminal
(() name ET(1:L) >

“NO

(ts B(j) a clock nam

NG

Decode
Switch

Register

Decoder

8(j)—> P(2,NP) -
T~
P
—

-2 > P(1,NP)

NP+1—>NP [7(2,L}—>P(2,NP)

Decode Register, B(j)

- 45 -

= R(1,L)

The register may have one of the forms: Name
Name (Subreg. name)
Name (dl)
Name (dl_d2)
>N°E R(2,L) — p(1,Np)
Is B(j+1) an(" 2 NP+ 1~ NP ’ ’
.‘>G) o : ~ [R(3,L)—> P(2,NP) ,
YES
B(j 2) must be a
NO subreg.name. Find SR(2,k)——>P(1,NP)
G 8(; +2) const@‘> k such that WHI>W 2 sa(3,k0—> p(2,10)
SR(1,k)z 8{j+2)
YES :
SR(4,k)= 8(J) , EXIT
: 1 —— P(1,NP)
NO v . ;
Cs B(j+3) a n-m)—%—"NP-I'-‘I—-}NP R(3,L)-R(2,L) +1 = J+3—>] -
- +8(j+2)
YES ' ——> P(2,NP)
B(j+4)-B(j+2) +1
—> P(1,NP) - S
NP+ 1—> NP R(3,L)-R(2,L) +1 j+5—>]
+B(j+4)—p(2,NP)
Decode Memory B(j) = M(1l,L)

The memory word must have one of the forms:

‘->6 8(j+2)
NO

Name (addr,' reg.)

Name (constant)

M{3,L)—=> p(2,NP)

W(2,L)sB(] 2 u(2,L)—>p(1,8p)
NP+ 1> bt T s L) 4 k= P (2,00]
YES '
a consD j+3 —_
M(2,L)— p(1,Np-1)
NP+ 2 ~—>Np Lo W(4,L) —3 k /‘R(3:L)-—>P(2,NP-1) —
R(2,k) —> P(1,NP)

- 46 -

Decode Decoder B(j) = D(1,L)

The Decoder must have the form of:

0(2,L)>p(1,NP+1)
5(3,L)->p(2,NP+ 1)

0 —> p(

1,NP+ 2)
B(j +2)>P(2,NP+ 2)

-101—> P{

1,NP + 3)
EQU —> P(2,NP+3)

Decode Clock B(j) = c(l)

The Clock must have the form of either Name or Name (const.)

NP4+ 3—>NP
j+¥3—=j |

B(j+2) — i i+3—>] =
\ vES
{1s B(j+1) a n(n ¢ NP+ 1—> NP
NO
0—> i i— i 7=

Name (const.)

©

-1 ~—3 P(1,Np)
i —> P(2,NP)

- B G B S G AR N N m U Eh) O G B U s e am

Decode Switch B(Jj), B{(j+D, B(j+2),

- 47 -

i.e. It must be an expression

which must be translated as YES or NO

Are B(j+1) and
B(j+3) left and right
par.
\%/Yes .

36 —> P(1,NP+1)
SW(3,L)—> P(2,NP+1)

0 —> P(1,NP+2)
B(j+2)— P(2,NP+2)

-101 — P(1,NP+3)

EQU———=- P{2,NP+3)

/

NP+ 3 —> NP
j+3—>]

B(3+3)

sw(l,1l),

NAME (Pos)

NO

&)

(3e) Translate Switch Setting

This must be a microstatement in the form of
Sw.Name = Sw. position

and B(j) = sw(l,L)

NOQ
Is B(j+1) an ‘=" @

YES

0 —> P(1,NP+1)
B(j +2)—>P(2,NP+1)

=101 ——p(1,NP+2)
= —> P(2,NP+2)

36 —> P(1,NP+3)
SW(3,L P (2,NP+3)

j+2—>]j

—49...

(4) SAVE in Communication Table

This is a part of the Executive Program,

be given in another report.

The detailed flow charts will

50
4. SIMULATOR
4.1 Description
The Simulator executes test programs written for the designed computer
and prints out the contents of prescribed registers. Obviously, the calling
of the Translator must precede the Simulation because the Simulator needs
the results of the translation.
The Simulator consists of the following four routines:
Loader |
Output routine
Switch routine

Simulate routine

Loader. For the simulation, it is necessary to read the test program from

punched cards and store it into the memory of the designed computer. This
is accomplished by the Loader.

Qutput routine. During the simulation, the contents of certein registers

will be printed out. This is handled by the Output routine which must be
initialized by the list of the registers whose contents must be printed.

Switch routine. All digital computers have manual switches. The simulation

of a manual operation, e.g. turning the POWER switch ON, is accomplished by

the Switch routine through reading switch cards.

Simulate routine. The actual execution of the test program is done by the
Simulate routine.

The above four routines are not independent. The Simulate routine can
call parts of the OQutput and Switch routines. The actual simulation is
done in a loop, called Label Cycle loop. One label cycle comsists of 4

steps:

- 51 -

1. The requirement for manual switch setting is tested. If there
are switches to set, the corresponding segments of the Polish String are
executed. |

2. All labels are tested for true or false. No true label causes
exit from the loop. The same way, more than one true label corresponding
to the same clock time causes an exit.

3. The corresponding microstatements of the true label are executed.

4. The contents of the specified registers are printed by the Output
routine.

Control cards

The Simulator has its own control cards for the purpose of initiating
the above-mentioned four routines. The control cards have * in column 1,
the list starts from col. 10:
*LOAD
*QUTPUT list
*SWITCH list
*SIM | list
The lists are described in the sections of the four routines.
4.11 Loads
The Loader is initiated by the control card
col. 1 = *
col. 2-5 = LOAD
The réutine assumes that the above control card is followed by data
cards containing a test program. These data cards must have the following

format:

- 52 -

col. 1 = blank

col. 5-10

name of a memory of the designed computer, left

adjusted, or name of a register.

col. 15-20 = octal location in the memory, right adjusted, blank if
col. 5-10 contains a register name,
col. 27-50 = the octal word to be stored in the above defined loca-

tion, right adjusted.
Comment cards, with C punched in column 1, may be inserted between the
test program. The Loader reads the test program card by card, prints it, and
stores the octal words in the Storage Array at the defined locations.

4,12 Output routine

The control card, *QUTPUT, initiates the Qutput routine by defining
registers and switches whose contents and positions are to be printed. The

list in col. 10-72 may have one of the two forms

LABEL (n) = R1, R2, ..., Rk

CLOCK «(n)

R1, R2, ..., Rk

where R1, R2, ..., Rk are the names of registers and switches whose contents
and positions are to be printed. 1In the first case, LABEL (n), the print‘
occurs after every n label cycles; in the second case, CLOCK (n), after every
n clock cycles. Naturally, if fhere was no clock defined in the Qesigned
computer, the clock cycle may not be used. n must be a non-zero octal integer.

4,13 Switch routine

The *SWITCH control cards define manual switch settings. The list must
have the following form:

col. 10-72: n, SW = PS

- 53 -

. 4.14 Simulation routine

The control card, *SIM, starts the execution of the test program. Thus
tﬁe control cards for the Loader, Output and Switch routines must precede it.
Since the simulation of the test program may run into an infinite loop, it
must be safeguarded by a time limit. This time limit is defined by a maximum
numbef of label cycles allowed and it is given in the list of the control
card with one of the 2 forms

col. 10-72 either n

| or n (L)

where n and L are nénzero octal numbers.,
1. n without the subscript L gives the maximum number of label cycles after
which the simulation stops.
2. If n(L) is given, the simulations stops if the L-th labeled statement
is evaluated n—-times. The numbering of the labeled statements corresponds
to the order as they appeared in the description of the designed computer.

Execution of Segments of the Polish String

During the simulation, segments of the Polish String must be executed.
This is done by the help of a pushed-down pseudo accumulator and by the opera-
tor subroutines. The pseudo accumulator (AC) can handle up to 72 bits, thus
all registers, memory words, étc., of the designed computer are restricted in
maximum size of 72 bits. There are 2 basic subroutines in fhe Simulator:
BRNG (n,L) brings n-bits from location L in the Storage Array into the pseudo
accumulator, STRE (n,L) stores the contents of the pseude accumulator into
the Storage Array. The operators (complement, logical OR, AND, functions)
must have their corresponding subroutines in the Simulator. The operations

are performed between the last two entries of the pseudo accumulator.

_54-
4.2 SIMULATOR - FLOW CHARTS
In the Initialization, the results of the Translator are

received through the Communication Table.

Read card :
col.l. AA

col.2-72 A(})

A
Interrpypt

table “I"

W CH
= SWIT

\

(1) Simulate

routine

Get n and LL
from control card

Print
heading

for output

0 —> IEC
0 —> (LL

V

YES
-

- IEC+ 1 —>EC

. \
(1) —

Search for true \\\\No true Label
label

i

Check and execute

Interrupt Table

Y

Print
Machine
stops

Lt'th label with
entry NK

Execute Polish
Segment

(NK,1,MC,00)

V NO
<:j;s MC zero ? i:>

YES Y

Update MC clocks

(ce(i)yj 15e..Mc)

N YES
(IsLLzero ? Hxs L=LL ?}

ILL+ 1—>ILL

\ YES o

IlEG —_— W I ILL —>m

PRIENT

with 1E6,L

]
- NO .
(:Ef,m less than niE) ' EX{T

(la)

ENTRY

EXIT
ith no

56 =~

Search for the unigue true Label

Output:

NK = Starting index of the microstatements in the

Polish String for the true Labeled Statement

t— L

0——’-_].

\

=-—LsT(L) k

Call SEGMNT

(k,i,MC(j-f'l),
cc(2,j+1)

3
Y NO
GRS auan S

YEs\y

—

LST(L) —>

L¢l—>1L

\
- ! NLS;:)
‘ s arger than
et g ?

WYES

YES

\\}s j zero 2

'\VNO

ce(1,3)

YES YES
CsNCzero? H'S j=1 7 =

NO

0

NO

cC(1,1) —> L
P(2,L)+ 1 —> NK

G Ne=1 2 ngs =1 2 Jg' c(3) +1 —>0¢(3)

NO

Find next clock
time i
0<£ i £ nNe<t

Find true label \
by clock, increase

proper clocks

(lb) Execute Polish Sement: SEGMNT (NP, I, MC, CC)

P(2,k)—> L Nk
=, < | ENTRY
© {KK—»P(2,L) 0 —— KK
A 0 ——> MC
¥
P(2,k) — Kk k+1—>k -)l
]
__—A———YES T—>ac(1,1)
k+1—>KK récTs P(1,k) = ~4 2 1—>AC(3,1) !
NO ‘
v YES I;-‘li—-, lc
[1s P(1,k)= -1 2)=\ MC+ 1 —=M :
(") P(2,k)‘-——> P(2,k)-1—9k
T co{Mc
) YES .
{ 1s P(1,k)= -3 NO
. is P(2,k) zero
; NO ’
Y "YES

YE
(0 T =)< et = 52)
\ /

< P(2,k)—1—->k! \
Y ' ~JES - 0 —= Ac(1,1) -~
(ls P(1,k) zé,-a?j -1 |41 ! 0 —> ac(2,1) -
i | - 1 —>1 : P{2,k)—> Ac(3,1)
Y
\ Mo
Is P(1,k) -1wv
\yYES
Call operator .
) P(25k) % P(2,k) an -_-_D Pl —> |
with arguments s : p(1,k) R AC(1,I)
AC and | W 1 —=jj
k+1—>k
¢ 2 ——a]
]
P(1,k) —>n}—<
4/ vES BRNG(n,L) ———sm
Is P(2,k) larger b :
(2, zhan ger P(2,k) —>L = AG(3,1)
Y : \VNO — YES
.
-P(25k) —> L .
P(1,k 1)——>m ——>-—<:JJ=1?
\y | NO
BRNG(m,L) —> a : AC(3,1) ——> -
P(2,k 1) + a.n _>_‘k+1———>k = o STRE(ln,L) =
L . | -1 =
-

- 58 -

(1c.) Find next clock-time: i

ENTRY -
NO i
Is i smaller than .
NG o 0 i
\/ ves
YES i i A0
c 2)=C
Pl — is c(i+2) (|+‘3}‘ =,

(14.) Find true Label by clock, increase contents of proper clocks

S Is j_'-: 1 ? \YES 1 > N
¥ NO Y ‘
t—>L | YES| ¢G(1,n) —> L
= EXIT
‘ Cs MC(1) zero _>‘>l p2,L)+ 1 NK
Erro 1—> k WNO
0 —=> n ;
NO ['H -9——{(20(2,\'\) —_i
YES —
Cs n zero ?)4%(2,@:. ?
¥ i 4 c{i+3) +1
’ — ¢(i 3)
— T

NO
{ 1s k larger than j ”T—Ej

\bYEs : \
™ NO , — YES
Cls n zero ?]) (!skzero ? ﬂ'—‘>k
{ YES NO

\NO
i+1— 1 k- 1—>k | ‘@smaller than@>

v | YES

¥ _ | |

.YES Is [smaller than JTT—~C(k 3 Fk+1 — k
NC 2 > / ———7V———J
\l,No

. ‘TT -1 —_—
Y 0 —>i o(k+3)
= L+1—=1L
NO N
- Is L larger than
o~ _ NG ? J
YES

- 59 -

(le.) Check and Execute Interrupt Table

The interrupt table IT(j, k), j =1, 2, k=1, ..., INT is estab-
lished by'*SWITCH control cards. IT(l,k) gives the count of the
label cycle when the interrupt occurs, IT(2,k) gives the entry-

point to the Polish String for the execution of microstatements.

T
V
__giCs INT zero ?)

NO

1 —k i

YES
___{:[% 1T{1,k) = 1EC ? 1 17(2,k) = NK

NO

Execute Polish
Segment

(NK, 1,MC,C0)
YES Is NC zero ?
\ 4:>

i 0

NO - ‘

th)
~<—{ Is k larger IN?n? Update MC clocks
YES

CC(j)s] 1gesssMC

EXIT

(1£.) vuUpdate Mc-clocks

ENTRY

:

\

Y

—
9& is k zero . ?

CC(j)—>i

Y

c(i+3)+1
—> ¢(i+3)

— TT

\

R a3

-60_

™ YES
) —

T

k = 1-—>Kk"

\

TT—> 6(k+3)|

j+t—]

N

NO
__.6_4 1s j larger than@

YES

0 Gk smaller than N9 <

\/YES

k¥l —k

\

T =
c(k+3)

(2) Load routine

\

Read card
col.l. Al

col.2-72 A(])

(Is A1 a

Print
card

T\ES ~, EXIT

-

NO

image
c01.5-10" s AA
location —> AC(1,1)

word —> AC(2,1) +
’ AG(3,1)

Find index L such
that
AA = M(1,L)

M(2,L).AC(1,1) + .
M(3,L) ~—> k

V

M(2,L) —>n

\

ao(3,1) —> |
=~ STRE(n,k) ‘

- 62 -

(3a.)

Initialize Output routine

Separate symbols
from A(j) into B(k)
J= 290eey12
K== Tgeessht

YES - NO 2 —> |DL
1 > 1oL | Is B(1)=LABEL D—%— ¢(3)—> NCK
Y
=, B(3)—=-NDC <
0—> i
5 —]

: YES
.<Is Jj larger than @9—

NO

i+l —> i

i —> NOUT

0 —= NL

(This routine~is the same
as (1) of the Translator)

EXIT

Is B(j)=sw(1,L

. ~\W0
ts 8(j)=R(1,L)=\N j
a register name? a_switch name ?

B(j) = 0(1,i)

J+1 —]

YES \V YES
oL) — 36 —>
R(2 L)¢(2’i) s (—2-’3)
/ R(S’L)m ! (3,1)
Y
0 —> §(3,1) -
0—"‘¢(5’i)

(3b.)

- 63 -

YES
m‘écs o=t 7 (e ol3)-Nck
'

Print part of the Qutput routine

smaller than NDE

NO/
—<—-Gs NL= NDC ? o(3)— ek
\VYES 10lock!
0 —> NL —~> BB
'L:Eil'aa = Print < J
BB "cycle! |EC
"lagt label"
L
1 |
—
ls 0(2,i))Ng-. BRNG(g(2,1),8(3,1))
smaller than ze . —— ﬁ(5’|)
YES
| \ ._ .
BRNG(36,48(3,1)) [,Q(Z,i)-o- 2] .
= f(4,1) 3

/

—
Print
B(1,1) with

format A6
J(4y1) with
format
A6

(Is n larger thanyo }-;—Y S

NO

Print
g(1,i) with
format A6
#(5,1) with
format ﬂn

—

Print

#(1,1) with

format A6

#(4,1) with g
#(5,1) with g1

)\

i+1—i

NO Is i larger
. than NOUT 7

YES

- 64 -

(4.) Switch routine

Interrupt Table: IT(1l,3j), IT(2,3)

(fhis routine is the same

Separate symbols
" from A(J) into B(k)
J= 25600912
I PN |

as (1) of the Translator)

INT+ 1—>INT

Find index j such
that

8(3) = sw.(1,])
B(5) = sw.(2,])

8(1) iT(1,INT)

SWL(3,j) —>
IT{2,INT)

iv.

- 65 _

AVAILABLE BINARY OPERATORS

Form:

Al (operator symbol) A2

Number of
bits of theJ

left by A, bits.

Symbol| Description Arguments Al,A2
result
+ Logical OR At least one of the arguments
must be a variable. If both n(a)
are variables, they must have
the same length in bits: n(a)
* Logical AND At least one of the arguments
must be a variable. If both n(a)
are variables, they must have
the same length. in bits: n(A)
- Exclusive OR At least one of the arguments
must be a variable. If both n(a)
are variables, they must have
the same length in bits: n(a)
.EQU. If A, is equal to |At least one of the arguments
A_, the result is |must be a variable 1
one, otherwise zeraq)
.ADD. The result is the |At least one of the arguments
algebraic sum of must be a variable. If both
A, and A,. The are variables, they must have n(a)
possible overflow |the same length: n(A)
bit is discarded.
.SUB. The result is the |At least one of the arguments
algebraic sum of must be a variable. If both n(a)
A, the complement|are variables, they must have
o% A, the same length: n(A)
- SHR. A ii ;hlitegits A, must be a variable with
TLIRE BY Ay " | length n(a;)
. SHL. Al is shifted n(Al)
left by A2 bits. A2 must be a constant '
.CIRL. | A, is circled

two

- 66 -~

Information about defining new operators

If one wishes to define new binary operators, there are

steps to be followed:

1. cChange the deck OP (ENTRY OPER)

2. Writing the function routine.

Assuming the name .XXX. for the new binary operator, the

OP routine is changed as follows:

a) The decimal integer NOP must be increased by one.

b) BCI 1, XXX

card must be inserted to the end of the array SYM

c) TSX XXX,4

card must be inserted to the end of the array ENT

The subroutine’XXX(IlB) must be provided with the package.

The address of B,

ments as follows:

a(B)-1 and a(B)

a(B)-2

a(B)-4 and a(B)-3

a(B)-5

a(B), provides the addresses of the argu-

are the two consecutive addresses where the

argument A, is located in the right adjusﬁed

2
form with preceding zeros.
contains the number of bits of Az. It is

zero if A2 is a constant.

are the two consecutive addresses where the
the argument Al is located in right adjusted
form with preceding =zeros.

contains the number of bits of Al. It is

zero if Al is a constant.

I represents an integer and it must be decreased by one.

